
MH MPG Report 1541-TR 6 

i 

I .j Honeywell 
26 December 1963 +- 

ROCKET BOOSTER CONTROL 

NASA Contract NASw-563 

OTS PRICE 

MlCROFlLM $ - l e -  

M I L I T A R Y  PRODUCTS GROUP R E S E A R C H  D E P A R T M E N T  



26 December 1963 

-k ROCKET BOOSTER CONTROL 2 

SECTION 6 J 

TIME-OPTIMAL BOUNDED 

PHASE COORDINATE CONTROL 

OF LINEAR RECURRENCE SYSTEMS 
/ 

7 
NASA Contract NASW-$3 ) 

Prepared by: 
i z i ,  rei; d 6 B @ C / / F b  3 E. B. Lee 

nesearch Consultant c 

Supervised by: e, A ? - / J ~ , E  

C, R .  Stone 
R e  search Supe r-vi B o P 

Approved by: 
0 .  H. Schuck 
Director  
T4PO Research 

M i nneapol i s, Mi nnesota 



ii 

FOREWORD 

"his document is  one of sixteen sections t h a t  comprise the f i n a l  
report  prepared by the Minneapolis-Honeywell Regulator Cornparry fo r  the  
National Aeronautics and Space Administration under contract  NASW-563. 
The repor t  is issued i n  the  following sixteen sections t o  f a c i l i t a t e  
updating as pragress warrants: 

1541-TR 2 Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

1541-TR 3 Modes of Finite Response T i m e  Control 

1541-TR 4 A Suff ic ien t  Condition i n  Optimal Control 

1541-TR 5 

1541-TR 6 

Time Optimal  Control of' Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Isinear 
Recurrence Systems 

1541-TR 7 Penalty Functions and Bounded Phase Coordinate Control 

1541-TR 8 Linear Programming and Bounded Phase Coordinate Control 

1541-TR 9 T i m e  Optimal Control with Amplitude and Rate Limited Controls 

1541-TR 10 A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem i n  the Calculus of Variations 

1541-TR 11 A Note on System Truncation 

1541-TR 12 Sta t e  Determination f o r  a Flex2ble Vehicle Without a Mode 
Shape Requirement 

1541-TR 13 An Application of the Quadratic Penalty Function Cri ter ion 

1541-TR 1 4  

t o  the  Determination of a Linear Control f o r  a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

1541-m 15 An Alternate Derivation and In te rpre ta t ion  of t he  D r i f t - M i n i m u m  
Principle 

1541-TR 16 A Minimax Control f o r  a Plant Subjected t o  a Known Lad Disturbance 

Section 1 (1541-TR 1) provides the motivation f o r  the study e f f o r t s  
The and object ively discusses the significance of the r e s u l t s  obtained. 

r e su l t s  of inconclusive and/or unsuccessful invest igat ions a re  presented. 
Linear programming i s  reviewed i n  d e t a i l  adequate f o r  sec t r ims  6, 8, and 16. 

It is  shown i n  section 2 that the  p l r e ly  formal procedure f o r  synthe- 
Gizing an optimum bang-bang control ler  for a plant  whose representation 
contains der ivat ives  of the control variable y ie lds  a correct  r e s u l t .  

. 
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n), of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be refomlated as a problem of controlling 
a single component. 

Section 4 shows Pontriagir?b Maximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for complting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 

In section 8 a maximum principle is proven for time-optimal control 

controls by use of penalty functions are discussed in section 7. 

with bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I2 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minixmm load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a 'certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

a 

In section 16 linear programing is used to determine a control function 
I that minimizes the effects of a known load disturbance. 
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TIME OPTIMAL BOUNDED PHASE 
COORDINATE CONTROL OF LINEAR 

RECURRENCE SYSTEMS* 

by E. B. Lee % 

ABSTRACT 
/5-5y 3 

The time optimal control problem with bounded phase 

coordinates is considered for systems modeled by linear 

recurrence equations. It is shown that linear inequality 

constraints of the phase coordinates can be transformed into 

similar linear inequality constraints on the control variables. 

Methods for finding the so-constrained minimum are discussed. 

A convergent computational scheme is presented, which, unfortunately, 

involves a large amount of equipment for implementation. It does 

not  seem practical to solve this problem on line using present 

computer technology. 

ANALYSIS 

The ;*c:;l i'c'cu-.rcnce equation 

A 
x(r+l) = A(r) x ( r )  + B ( r )  u ( r )  

will be considered, where x ( r ) ,  an n vector, is the system state; 
A 

u(r), an rn vector,is the control; A(r) and B ( r )  are m x n and n x rn 

bounded matrices respectively; and r = 0,1,2,. .. denotes the stage 
o f  the evolution. It is assumed that det A(r) # 0 for r = 0,1,2,000 

* Prepared under contract NASw-563 for the NASA 

f Research Consultant, Minneapolis-Honeywell Regulator Company, 
Minneapolis, Minnesota 
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The problem studied is how to select the sequence of points 

[u(O), u(1) ,... 1 = u from R : lujl 5 1; j = 1,2,..*,m so that 

x(r), the response of the above recurrence equation, when 

subjected to the sequence u, moves from x(0) = xo to an inter- 

section with a prescribed target G in the minimum number of  

stages r and at each stage of the response I x (r)l 5 Bk; k = 1,2, k .,,n, 
where B k are constants, (linear combinations of  the x kl s are 

similarly treated .) 

If W ( H 1 )  = A(r) W(r) for r = 0,1,2,a.o with W(0) = I then 

j=1 

k k The constraint: I x (r)l <, B , k = 1,2,. . .n will now be transformed 
into a corresponding inequality constraint involving the con+,rol 

sequence u = [u(O), u(1) ... u(T-l)] for fixed integer T > 0. 
Denote the closed convex set R x o x  

A 

x RCRmT b y R  A 

control sequence u = [u(O), u ( 1 )  . e o  u(T-l)] is allowable if it 

belongs to il . 
For r = 0 ,  x(0) = W ( 0 )  xo = x which does not depend 

0’ 

on the control sequence but demands that the initial data is 

such that Ixk(0)l B ; k = 1,2 ,... n. For r = 1, k 
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I 

k where W (1) denotes the  k j th  element of t h e  matr ix  W(1) and 

repeated index danctes summation w i t h  pespeet. t o  that index. 

The absve inequal i ty  on u ( 0 )  defines a closed convex subset i n  

t h e  space RmT of" variables  u = fu(O),  u(1) . * .  u(T-11. 

this subset i s  defined by hyperplanes, 

dznsted by A j Q ) .  

J 

I n  Pact, 

This sv-baet of €Im* is 

For r = 2 ,  

]xk(s) l  = j W 3 2 )  X J ( 0 )  + wi;i2)  w,1(1) BJO)  uViO) 

i? r , l > ~ e d  and m n w x  (maybe emp5y). 

1.i -=- CuCO) . . ., u(T-1)  1 belmga t o  the nonemp5y s e t  r{T), +he 

comespending response i s  such t h a t  Ix ( % ) I  < F f G r  

p =  0 ,  1, 2 ,  . . . y  and k = 1, 2 ,  ... n. Cmversely, if 

Ix (r)l I < Bk; r = 0 ,  1, 2, ... T; k = 1, 2 ,  e . . y  n with u E R 

the mrresponding contt.01 sequence u belongs m I ' (T>.  

problem of cptimurn control w i t h  bounded phase coordinates can be 

I f  a control  Feqi-xezxe 

k k 

k 

Thus the 

considered as Qne of f inding the  best contrcil sequence u i n  some 

closed convex constraint  se t  r (  T) C Rmr 
As has been done for the  case where the phase var iab les  a re  

not 'bounded the t a rge t  6 = {xlx H'x < 
stant and H = H' > 0. 

where c > 0 is  a can- - 
Introducing the  pos i t ive  defini+ve funct ion 
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J 

V(x) = x o H x  and the e r r o r  function E(x)  = xoHx - c ,  the time 

optimal control  problem wi th  bounded phase coordinates i s  t h a t  of 

f inding the f i r s t  T > 0 such t h a t  E ( x )  = 0 f o r  some x(T) belonging 

t o  the  s e t  of a t t a i n a b i l i t y  K(T,xo). 

of end points  of responses x(T) which i n i t i a t e  a t  xo f o r  a l l  control  

K(T,xo) i s  the co l lec t ion  

sequences u = [u(O), ~ ( l ) , ~ ~ ~ u ( T - l ) ]  belonging t o  r ( T ) ,  Since 

the funct ion which maps a point u E r ( T ) C  RmT i n t o  a point  

x(T) E Rn i s  l i n e a r ,  the image of the closed convex s e t  r ( T )  i s  

a closed convex set ,  K(T,xo)" 

f ixed T < P there  i s  a unique point  

a minimum (here 'IF denotes the f irst  (smallest)  T f o r  which 

Thus if r ( T )  i s  not empty f o r  

o f  K(T,x ) where V(x) i s  
0 

E(x) = 0 with x E K(T,xo)). The method of  f inding an optimum 

cont ro l  i s  t o  increase T one step a t  a t i m e  f inding a t  each t i m e  

the  point xdc of K(T,xo) which minimizes E(x). 

Tn, i s  found f o r  which E(x) = 0 f o r  some x E K(II"C,xo) an optimum 

When a T, namely 

cont ro l  sequence i s  known. A n  attempt i s  now made t o  f ind a 

path u ( t )  E r ( T )  depending on a continuous parameter t so t h a t  t he  

corresponding response 

T A 

x(T,t) = W(T) xo + Z W(T) W - l ( j )  B ( j - 1 )  u ( j - = l , t )  ( 3 )  
j=1 

moves toward fl E K(T,xo) as t->m f o r  f ixed 0 < T < Tsc, 

f ind tk l spa th  correct ions t o  u a re  computed from 

To - 

for j = 1 , 2 , 0 0 , T ,  where g ( x ( T , t ) )  has ye t  t o  be found, 
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Along a so lu t ion  curve x ( T , t ) ,  

dV(x(T, t ) )  - av ax 
d t  - ax'at 

c 

L 

= 2H X ( T , t ) * E ( T , t )  ax 
T 

= 2H x ( T , t ) .  2 h ( i )  i ( j - ly t ) .  
j=1 

Here h ( j )  = W(T) W - l ( j )  $(j-l).  Considering only one control  

var iable  u, i . e . ,  m = 1, the funct ion g ( x ( T , t ) )  i s  defined as 

follows : 

i f  

U ( t )  = [u(O,t) ,  u (1,t) ... u ( T - l , t ) ]  E ( r ( T )  - a r ( T ) ) ,  

(constant = B ( j )  > 0) 
and 

G ( 3 - W )  = - m ) B ( J ) h ( j ) H  x ( T , t )  (5)  
i f  u ( t )  E ar(T), where 0 < g ( j )  < 1 and 

la[= C l % ( j ) l  i s  the l a rges t  vector such t h a t  the  vector  

a t  u ( t )  E a r ( T )  i s  directed i n t o f ( T ) .  

i n  t he  hyperplanes a i eu  + b 

hyperplanes of r(T) then along the  so lu t ion  curves u ( t > ,  i t  i s  

required t h a t  

with norm - - 
T 

based 
j =1 

Tha t  i s ,  i f  u ( t )  l i e s  
i = 0 for i = 1 y 2 , 0 0 0 v  of the defining 

d ( a i * u ( t )  + bi)  = a i o  . u ( t )  0 .  d t  
To f ind t h i s  a l i n e a r  programming problem has t o  be solved o r  the 

method of gradient  p r o j e c t i o n  as discussed i n  reference 1 must 

be used. The l i n e a r  programming problem involves f inding K for 

equation (5) such that  l z l  i s  m a x i m u m  f o r  K" s a t i s f y i n g  the con- 

s t r a i n t s  : 

4 
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i 0 - < g ( j )  - < 1, and ai*;(t) = k * c  

To use the gradient projection scheme a matrix (equation 4.12 of 

reference 1) which is  s i z e  T x T must be inverted, where T i s  

- < 0; f o r  i = 1 , 2 y ~ . 0 v .  

the dimension of the space u (for one control variable defined 

on T segments). 

Since 
T 
.X ( H  x ( T , t ) * h ( j ) ) *  @(j) z(j) L 0 = -2 
3=1 

w i t h  @(j) > 0, 0 - < g(j) 1, it i s  not hard t o  prove convergence 

of V(x) t o  V(x*) as  t->oo; using the method for the uncomtrained 

case, Unfortunately it requires time t o  calculate and therefore 

the above computation for correction of the control must be 

discret ized.  Corrections of the control can be computed 

from the recurrence equation 

U (i+l) (j-1) = u(i)  (j-1) - k g(j)@(J)h(j) Hxii)(T,O) 

r e l a t ing  the  value of u a t  i+l t o  the value of u a t  i for 

k > 0 and i = 1,2y... One additional problem i s  now encountered 

i n  t h a t  the s tep s i z e  must be such that the corrected value of the 

control remains i n  the r e s t r a in t  s e t .  The s tep s ize  can be 

determined by selecting a value of k and then checking the 

constraints .  If they are  not s a t i s f i ed  k could be halved, and 

so on. Rosen proves convergence for t h i s  procedure i n  reference 1, 

Page 193. 

A s imilar  analysis is possible f o r  two o r  more control 

var iables  

Although the above schedule of computations can be carried 

out using high speed computers t o  find the optimum control sequence 
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f o r  a given i n i t i a l  s ta te ,  it does not appear possible  t o  do 

the  calculat ion on l i n e  a s  can be done f o r  the unbounded phase 

coordinate case.  

CONCLUSIONS 

The problem of optimum control  of d i s c r e t e  systems subject  

t o  phase var iables ,  constraints  and cons t ra in ts  on the  control  

var iab les  has been reduced t o  one involving cons t ra in ts  on the  

cont ro l  var iables  only. An algorithm equation 4,  has been 

developed f o r  determining the control  of the new cons t ra in t  region 

which provides a minimum t o  the quadratic cost  funct ion.  The 

computation does not appear t o  be p r a c t i c a l  f o r  on l i n e  so lu t ions ,  
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1 Rosen, J .  B. , "The Gradient Project ion Method f o r  Nonlinear 
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